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COMMENT ON "CORRECTED DIFFUSION APPROXIMATIONS
IN CERTAIN RANDOM WALK PROBLEMS"

Michael L. Hogan
Columbia University

Abstract

Correction terms for the diffusion approximation to the maximum and ruin
probabilities for a random walk with small negative drift, obtained by Siegmund
[19791 in the exponential family case, are extended by different methods to some
nonexponential family cases.

Key Words: Diffusion Approximation, Heavy Traffic, Random Walk, Gam-
bler's Ruin.
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This paper is concerned with e tensions to the nonexponential family case
of two problems considered in Sie . The first problem is to find the
expected value of the maximum of a random walk with small, negative drift, and

the second is to find the distribution of the same quantity. Siegmund's result
in the first case is the following (Theorem 1 of [61): Consider a -exponential
family P#, 0 E a neighborhood of 0, so that under P#, zx, X2,..., are independent
with density ez-*(O) relative to a nonarithmetic distribution F. Assume that
the problem is normalized so that E0(xz) - IV(O) - 0, Var0(z1 ) - Off(0) - 1. Let
Sn "- El zi, rb inf{n : Sn > b), r+ - rO, and M - supN{S, M < 00 PO -a.e.
if 0 < 0. Then, Siegmund shows that as 0 t 0,

EM - - + (A),

where A - 01 - f, and 0i > 0 is such that fp({j) - 4 ). In fact, he can calculate
the OA) term, a feature that will not carry over to the nonexponential family
case. In the second case the distribution of the maximum is given by considering
such probabilities as P(r& < oo) - P#{M > b). The appropriate normalization
in the exponential family case is to take b - , in which case Siegmund showed
that as 0 t 0

2C A f-S+ + *(
POr2f /A < 00)i - - 2r+

The first of the two problems has recently been considered by Kiass [1983],
who considers a translation family and computes the expected value of the max-
imum when the drift is small and negative up to terms that are o(i) as the drift
approaches 0, under the condition that the underlying random walk has third
moments, which is certainly a minimal condition. The problem with Klass' cor-
rection term is that it does not resemble Siegmund's correction term. Even in
the case of the normal distribution, to which both theorems apply, the equality
of the two correction terms is not apparent.
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Here, the random walks will also be assumed to belong to a translation family,
i.e., Pe(X 1 E A) - PO(X 1 -D E A), where EOX 1 - 0, EoX12 -1, and EoIX3I< oo.
This is not necessary, but is the easiest framework, next to exponential families
that incorporates the appropriate continuity in distribution. The maximum will
again be denoted by M - sup(Si; i > 0), which is almost surely finite provided
O < 0. It will be shown that

-1 EoS 2 r

which is the result of Siegmund in the form he gave it, modulo a different
parametri- zation. He used the parameter A - 01 -0, where 0 < 0 is the canoni-
cal parameter of the exponential family, and 01 is such that 0(81) - 0(0). It is not
hard to show that with ,0() €'(O) =0, and ON(0) m1, A - - j+ +o(),
-y- EoX?, and from the Wiener-Hopf factorization

EoS?+ +oS _

2E0IS,.+ 2EijSt 3*

Using these two relations, it is easy to establish the equivalence of Theorems 1
and 2 with the corresponding results of Siegmund.

The distribution of the maximum is determined by the quantities
PO9(w < oo). To get a diffusion limit one assumes that 0 > 0 -. 0, and A6 -- -C,
and the relation b - ml/2, 0- -, f > 0, m a large integer has been chosen.
This seems a bit peculiar here, but it is the usual way of normalising a random
walk to get a diffusion limit, and, in fact, the first term in the distribution is
essentially given by the invariance principle. The result in this case is given by
Theorem 2, and it basically depends on Lemma 1, but some technical conditions
beyond those required by Lemma I have been imposed to facilitate a Fourier
inversion. These conditions are, doubtless, not minimal.
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In addition to the notation introduced above, for D < 0, let

r- - inf(n : Sn 0),X-(X) - Re I - )},
X+(X)--x'S+; + < oo}

0(\) - Eje xX.

Of course, some of these quantities depend on 0, but that dependence will be
suppressed.

Lemma 1.

, DEo(Sr)Ej(Sr+; r+ < oo)E#(S,_) -- - 2 EalS,_) + 00)

as 0 > 0 --0 0, provided EoWXI13< oo.

Proof. From the Wiener-Hopf factorization (cf. Feller 11971), p. 605)

1- (X) - (1 - X-(X)XI - X+(X)).

In particular

'o) - xl_(oXl - X+(o))
- X_(o)Po{r+ -oo).

Consequently,

1- 00)- (I - X_(\))P*(r+ - 00) - (I - X-(.)XX+(0) - X+(\)),

and

S- () + XX_(0)JP (r+ - 00) -( - X_(\) + xlx_(O))P(r+ - 0)

P - X-(\)XX+(O)- x+(\)).
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The condition EOlX,13< o guarantees that Ee(Sr_ ) < oo, E(Sr+; r+ < on) < 00,

so dividing by \2, and letting X -. 0 produces

0) X(O) +- oo} -e(s,_.)Ee(S,+; + < oo)

2 + 2Pgr-

or, using

1 _ _

POO,+ -oo 00) ,- -Ees_

(Woodroofe [19821, Sec.2.3)

-Ee(Sr_.)E(Sr+; r+ < o) X) ESr_-

2Ee(S,_)
0 2) *E(Sr) + 0(#2 ).

E,(St).

Now, _____ is a continuous function of 0 (see proof of Theorem 2, Chapter 5,

Hogan [19841), in spite of the fact that numerator and denominator separately
need not be. This observation establishes the lemma.

Theorem 1. Suppose EOW31< oo. Then as 0 > 8 --1. 0

ESM -M - P'-- r 00- -- ().

Proof. It is easy to see that M can be represented as a randomly stopped
random walk, M/- ZN, where, under P#, Z £Sr+ I r+ <0o, and N is a geometric
random variable with success probability PO(r+ < o) completely independent

5
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of the random walk. Hence

EM - ENEO(Sr+ Ir+ < oo)
Ee(ST+; T+ < 00)

PO{+ - 0)
-EO(Sr+; r+ < OO)EO(r-)
-EO(S,+; r+ < oo)EO(S,_). l

2'-ES- +o(0))

by Lemma 1. I

The increasing ladder times of a random walk Si are the times

r(°) = 0

r(l) - in{n : Sn > 0),

,(n+1) = finf{n > r(n) : S. > St(n), } ) (n) < cc

to, 7(n) = cc.

The increasing ladder process is the process

Zo~zo=O

Zi  $ S') 1 (r()<c),  i > 0.

Lemma 2. Let Si be a random walk with ES1 < 0. Then

P . a; -W F() P{Si <_ 0 W),



where F(a) E-0 P(Zi < a, r(i) < oo) and Zi is the increasing ladder process
of Si .

Proof. This is Lemma 8 of Spitzer [19571 when the distribution of Xi is
absolutely continuous and is equivalent to 12.2.7 of Feller 119711 in the general
case.

Theorem 2. Suppose X are i.i.d. random variables satisfying EoX i -

0, EOX 2 - l,EF1XI15< oo, and P# are such that Pg{X i E A) - Po(X i - 0 E
A). Suppose further that 300 < 0 such that V D E (00,0], ST+ l'r <oo} has an
absolutely continuous distribution under PO and satisfies
Condition 0: The densities APe(Spr < z) are a bounded subset of LX(It) for
someX > 1. Then

P(rg <o00) - C-2C( 1  3+ EoS +0(0)

as 0 t 0.

Proof. Many quantities will implicitly depend on the parameter. Let

P- P._.(r+ < 00)

pi E.g(Sriq.< o)

J(9) - E.(c'S'+*Ir+ < oo).

Consider first the quantity Eu0o P.(Z, < 1, (n) < oo), where 4n is the
increasing ladder process for S, and the r(n) are the increasing ladder times. As
in the Fourier-analytic proof of the Renewal Theorem (see e.g. Breiman [1968])
it is easy to show that

,i0 U-0 sf-00 t I -P f(t)
- If 00 sin (9/0R( !

1(Of00sin Ct/9 (I1-p fi(t))dt
- _-o t (I -p f(g))2 + (pf 2(t))2

'p
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where f(t) - fl(t) + 1 (t), f1, 12 real. Making the change of variable - z and
multiplying and dividing by I -p brings this into the form

I100 sin~ (-p f(Dz)X I- p) z
-00(i- ) l-pf(D)2 + (f2(fz))2 dz,

and so by Lemma 2

Pe(ra -oo) 1 00 sin fz dz
I-0 -P ! fi (64 + (Pf-(GARM

lfo sincz,[ i d (1)

Sr00 sinCz( 1 h

-00 Z -P ) -I)) J V 2

where up - E.(Sr_)E(Sr+; r+ < co). By Lemma 1, Vp is known up to terms
which are o(1 - p), and therefore the first integral is known up to terms of the
same order. It is necessary to analyze 4 X second integral. For this, it is
convenient to break the integral up into > where C, -a > 0 will

be specified later. The conditions of the theorem guarantee that f, and 12 have
expansions of the form

/ I _ ,,4 2 + ( 4 )

where O(zk) holds uniformly. Using the fact that 4 is bounded above and away
from 0 it is easy to see that

, -P; (*Z _ pL 0 - - p2 + o(*,)
1-p 21-pf (Dz) _______+__oI_______

p2 ___2_8_
(I __AI_____ M ot))_I________________0324

(1. 
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"i and

•p 2 (SZ)

(I -(Oz I p (I? ? )) (C + .- 03 -4 -

2z20(#,.g) ). ,, 2 + o(#2z4

-- ,2z2 +,? p =,f*2Vpz+(21)

'i Consequently

R l-p I

and

R, -pfiz) I pZ2= (I + v,2z2Xl + v,2z2 + 0(02z6))'

Now, if a > - the O0(820 ) term in the denominator is o(z2) for jzj< d~l, and
consequently the denominator is > const.(1 + z4). Therefore, the second term in
the numerator contributes to the integral as

sin fz (OZ2) • Z3 Z

~and Oz2 - 0 as 0 - 0, 1z1< if". Hence, by dominated convergence, this contri-
~bution --- 0.

i It is also clear that

l1(2.2 ) =. O(z_ )

+ +2.) + +.,2. + o(O z6)
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for some 6 > 0, and so

4sinC fz P 0 Pz2(1 ~VPz2) d
.Izl<eVeoz (I +v2z 2X1 +,v2z 2 +O(O 2 z6))

sin f z P -9 Zi, z P. " dz- i,1<(8, z (I-+-1 2z2) 2

+ ~ ~ ~ ~ 1 0 fk<9 If4~ 2 (1 - 2 z2 )z- d

fj_-<(9&z (I+ VPZ 2X1 + v,,z2 + O(e2z6))

and the second term is easily seen to -- 0. Consequently, using P2 p ". =
,ES 2 z

2 1~

dz- y z(1 d
-pII< o f(OZ) 1-0 z( (2)2)2

where this last integral exists, and is taken as a principal value. Evaluating shows

* this term to be

#(4f - 2)c-2 t. (2)

% .1 Next ewill be chosen to satisfy cos (W- 0. Clearly, since a < 0 such that
can be chosen arbitrarily small (or large). Then integrating by parts shows that

If sin fz dz if ooosz(1 +3Z2 2 )

JIZI>(00 z to* z2I2IDJ E2ek

0 provided ot <

* Finally, consider

if sin fz I__sn___ di
46,z>9cz -pl f(Dz))

%"180 z 1 ( OZ l_,coc , I) , =..+- ( ,Z
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The change of variable y - Oz brings the integral to the form

isin - dz 1: sin Ldzi

+1 00 sin fz/8 Pf(z)
+ e6+2 Z -- pf(z)

-1+H.

v" With the choice of e as above

If oo si~n 0 0 o fV zz I 01+0

< const. -0-a-1 -- O

Condition 0 has two consequences. First, because under P#, Sr+l(r+<Oo) has a
continuous distribution it is continuous in distribution as a function of 0. This is
easy to see simply by considering sample paths. In particular, given a sequence

f(t) - EoeIt S?+; r+ < oo) Pi E (0, 01,

it is possible to find a pointwise convergent subsequence. Second, by the
Hausdorff-Young theorem (Katznelson [1Q76], p. 142) the functions f(V) form

a bounded subset in L-(*, dy). In particular, if 1 < X0 < 1X, IfIX0 are uni-
formly integrable. In as much as any subcollection has a pointwse convergent
subsequence, it has an L2(R, dy) convergent subsequence, and so the f(w) form a
compact subset of LXO(R, dy). The function

11
1 E "- " " ' d")
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0

and so

is a compact subset of LI(W, dg) (reminder: f depends implicitly on F). it follows
directly from the Riemann-Lebesgue lemma that

u in.

For f .(aome)dz, note that

-(z) 1+ iolz

Z(1 -p z))- ll- Al +iplZ)) -U(z), zEI, l.

!' where g(z) is uniformly bounded and continuous in 0. It follows as above that

sin g(z)dz --* 0.

Also, it is clearly enough to consider

101 8in 1 +iPz ,.-

Re Jei+*" z 1 - p)- iPPlzd

Ssn (1-p)+pp4z 2

(off*i e z (I - pl2 + (pplz) 2

Pplz).2 (I -ep)

p)2 + p2pz 2  (1- p)2 + p2l

and since

f sin (Vdz

2
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7.7

has been treated it is enough to consider

A.i si 1 Id
(I -p 0+0 (- p) 2 + (ppi 1z)2 dz

,0 COS L, .I 2piz d-P -P Z2((j- p)2 +,(ppz2)+ z((j-p) 2 +,(pp, z 22)

Over the interval of integration (1 - p) is much smaller than z, so each term in
the integrand is <const. and the integral is bounded by

const.(l -p) - -roieLd < - const. 02(0 - 3(1+a))

-0 provided a < -1. Therefore, the various conditions placed on a are simul-
taneously satisfied for any a E (-i, -I). So, evaluting the integral in (1) and
combining that result with (2) gives

Prl- oo) - e "P + #P(4f - 2)e- 2C + 0(s).

By Lemma 1

1P E(Sr-)

so

PITPI- - s_ - e(E1- ) + 200+o(D)

The Wiener-Hopf factorization shows that

ESL

2E(Sr- 18

is*** *~ 9~'*
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where - E0(Xj3). Hence

P~fo- oo) - -2f I A!- 2 00)+ ()3 +00),

which is the form given by Siegmund [197], modulo a different choice of param-
eters, as explained earlier.

Here is one condition that guarantees that condition 0 is met. Other condi-

tions along this line can be formulated.

Proposition 1. Suppose X, has a density under P0 which is bounded, and
decreasing on 10, oo). Then condition 0 is satisfied.

Proof. First note that the existence of a density for Sr+ is trivial as any
randomly stopped partial sum of an absolutely continuous random walk is abso-
lutely continuous. It is certainly enough to show that the densities are uniformly
bounded by a constant. These densities can be written down explicitly.

P{$T+~ > z, T+ <oc)-} 2J P(X 1 > z- v} P{$ E dv , r+ > n)
00 0

f o eXI > V- 1}(dy)

H(A)-- 1 SnE A, T+ > n), A C (-oo, 0I
R-0
0-, IS {s5 0,..., sn_1 <_ 0, sn E A)

n-O

n=O

- E(# of visits of weak decreasing ladder process to A).

14
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Consequently

P(Si, < + h) - P(ST, <
/8

,-o0 A H(dy)

The integrand is < f(x- W) except possibly in a small neighborhood of the origin
where it is still bounded and

0 00

f Jf(z - V) H(dy) < 1 fxz + a)H(-n - 1, -n)

_ const. : 1(z + n) < oo,
5 const. E f(n) : const.

therefore, by dominated convergence

daP{S.+ < X) - J z- V) H(dy) < const.

N H depends on the parameter p, but it is easy to see that the statements made
about H hold uniformly.

The representation of the distribution of Sr+ used in Proposition 1 can also
be used to prove a conjecture found in KIlass JI83], remark 2.5, which, in the
notation used here is that if EO(S2; S, > 0) < oo, E0 SI - 0, then

limEO(Sr+; r+ < oo) - Eo(S,).

Klass observes that pointwise convergence takes place. The following bound on
the distributions imply uniform integrability.

0  00
P(S,+ > n, r+ < oo1 - P_0lSI > n-) H(dz) _5 const. P.P-OlSI > "}

f-00
This stochastically bounds Sr+l(,+<,,) by a fixed integrable random variable.
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